Dissociation Dynamics of XPC-RAD23B from Damaged DNA Is a Determining Factor of NER Efficiency

نویسندگان

  • Benjamin Hilton
  • Sathyaraj Gopal
  • Lifang Xu
  • Sharmistha Mazumder
  • Phillip R. Musich
  • Bongsup P. Cho
  • Yue Zou
چکیده

XPC-RAD23B (XPC) plays a critical role in human nucleotide excision repair (hNER) as this complex recognizes DNA adducts to initiate NER. To determine the mutagenic potential of structurally different bulky DNA damages, various studies have been conducted to define the correlation of XPC-DNA damage equilibrium binding affinity with NER efficiency. However, little is known about the effects of XPC-DNA damage recognition kinetics on hNER. Although association of XPC is important, our current work shows that the XPC-DNA dissociation rate also plays a pivotal role in achieving NER efficiency. We characterized for the first time the binding of XPC to mono- versus di-AAF-modified sequences by using the real time monitoring surface plasmon resonance technique. Strikingly, the half-life (t1/2 or the retention time of XPC in association with damaged DNA) shares an inverse relationship with NER efficiency. This is particularly true when XPC remained bound to clustered adducts for a much longer period of time as compared to mono-adducts. Our results suggest that XPC dissociation from the damage site could become a rate-limiting step in NER of certain types of DNA adducts, leading to repression of NER.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dissection of the molecular defects caused by pathogenic mutations in the DNA repair factor XPC.

XPC is responsible for DNA damage sensing in nucleotide excision repair (NER). Mutations in XPC lead to a defect in NER and to xeroderma pigmentosum (XP-C). Here, we analyzed the biochemical properties behind mutations found within three patients: one amino acid substitution (P334H, XP1MI, and GM02096), one amino acid incorporation in a conserved domain (697insVal, XP8BE, and GM02249), and a st...

متن کامل

RAD4 and RAD23/HMR Contribute to Arabidopsis UV Tolerance

In plants, exposure to solar ultraviolet (UV) light is unavoidable, resulting in DNA damage. Damaged DNA causes mutations, replication arrest, and cell death, thus efficient repair of the damaged DNA is essential. A light-independent DNA repair pathway called nucleotide excision repair (NER) is conserved throughout evolution. For example, the damaged DNA-binding protein Radiation sensitive 4 (R...

متن کامل

Lack of recognition by global-genome nucleotide excision repair accounts for the high mutagenicity and persistence of aristolactam-DNA adducts

Exposure to aristolochic acid (AA), a component of Aristolochia plants used in herbal remedies, is associated with chronic kidney disease and urothelial carcinomas of the upper urinary tract. Following metabolic activation, AA reacts with dA and dG residues in DNA to form aristolactam (AL)-DNA adducts. These mutagenic lesions generate a unique TP53 mutation spectrum, dominated by A:T to T:A tra...

متن کامل

Roles of Rad23 protein in yeast nucleotide excision repair.

Nucleotide excision repair (NER) removes many different types of DNA lesions. Most NER proteins are indispensable for repair. In contrast, the yeast Rad23 represents a class of accessory NER proteins, without which NER activity is reduced but not eliminated. In mammals, the complex of HR23B (Rad23 homolog) and XPC (yeast Rad4 homolog) has been suggested to function in the damage recognition ste...

متن کامل

p53 responsive nucleotide excision repair gene products p48 and XPC, but not p53, localize to sites of UV-irradiation-induced DNA damage, in vivo.

The p53 tumor suppressor gene is an important mediator of the cellular response to ultraviolet (UV)-irradiation-induced DNA damage and affects the efficiency of the nucleotide excision repair (NER) pathway. The mechanism by which p53 regulates NER may be through its ability to act as a transcription factor, and/or through direct interactions with damaged DNA or the repair machinery. p53 has bee...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016